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Introduction: Inverse scattering problem

Reconstruct shape of scatterer(s)
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Introduction: Inverse scattering problem

Problem definition: Given

• the measured signal um on Γs,

• the forward model a(Ω;w, u) = `(Ω;w) ∀w,

• the operator F(Ω, u(Ω)) = usp on Γs,

find the domain Ω such that “F(Ω, u(Ω)) = uT .”

Remarks:

• Ω is the domain where the model is valid.

• a(Ω;w, u) = `(Ω;w) ∀w describes the interaction between the incident
wave and the medium.



Introduction: Inverse scattering problem

Forward problem: Given uinc = exp(ikx · d), find u = us+ uinc such that

−∇2u− k2u = 0 in R2,

∇u · n = 0 on the scatterer(s) surface,

lim
r→∞

r1/2
(
∂us

∂r
− ikus

)

= 0 Sommerfeld condition.

Equivalent weak form: Find u such that

a(Ω;w, u) = `(Ω;w) ∀w.



Introduction: Inverse scattering problem

Solution methods

• Backpropagation algorithm (Devaney, 1982).

+ Fast.
− Based on the Born or Rytov approximations.

• Nonlinear methods (Chew and Wang, 1990; Kleinman and van den Berg,
1992; Natterer and Wübbeling, 1995).

+ Avoid Born or Rytov approximations.
− Slow: methods are iterative in nature.

Goal: Construct an efficient algorithm that avoids these approximations.

Propose two algorithms:

1. Based on the concept of an “optimal shape” for the inverse problem.

2. Improved algorithm based on the “optimal topology” for the inverse
problem.



First method: Shape optimization

Iterative method: Find Ω that minimizes

j(Ω) = J(Ω, u) =
1

2

∫

Γs

‖u− um‖
2 dΓ

subject to the constraint

a(Ω;w, u) = `(Ω;w) ∀w.

• Optimization problem with Ω as the design variable.

• Use gradient-based algorithms to solve it.

Need to address the following issues:

1. Differentiation with respect to Ω (shape differentiation).

2. How to calculate derivatives in the presence of constraints given by
variational equations?



Shape differentiation

Derivative of j(Ω) in the V -direction
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Given the mapping

φε : Ω ⊂ R2 → Ωε ⊂ R2

φε(x) = x+ εV (x) ∀x ∈ Ω,

the shape derivative is

Dj(Ω) · V =
d

dε
j(φε(Ω))

∣
∣
∣
∣
ε=0

.



Differentiation in the presence of constraints

We want to calculate

Dj(Ω) · V =
d

dε
J(Ωε, uε)

∣
∣
∣
∣
ε=0

,

where uε satisfies
a(Ωε;w, uε) = `(Ωε;w) ∀w.

Want to avoid computing u̇ε. For that, introduce the Lagrangian

L(Ωε, uε, λ) = J(Ωε, uε) + Re
(

a(Ωε;λ, uε)− `(Ωε;λ)
)

.

So
L(Ωε, uε, λ) = J(Ωε, uε) ∀λ.

As a consequence,

Dj(Ω) · V =
d

dε
J(Ωε, uε)

∣
∣
∣
∣
ε=0

=
d

dε
L(Ωε, uε, λ)

∣
∣
∣
∣
ε=0

∀λ.

Seems we did not get much, but...



Differentiation in the presence of constraints

Differentiating the Lagrangian with respect to ε gives

d

dε
L(Ωε, uε, λ) = D1J(Ωε, uε) + Re

(

D1a(Ωε;λ, uε) · V −D1`(Ωε;λ) · V
)

+Re (a(Ωε;λ, u̇ε)) +D2J(Ωε, uε) · u̇ε

Select λ that solves the adjoint equation

Re(a(Ωε;λ,w)) +D2J(Ωε, uε) · w = 0 ∀w.

Then

Dj(Ω) · V =
d

dε
L(Ωε, uε, λ)

∣
∣
∣
∣
ε=0

= D1J(Ω, u) + Re
(

D1a(Ω;λ, u) · V −D1`(Ω, λ) · V
)

= G(Ω, u, λ,V ).



Differentiation in the presence of constraints

Summary. To compute Dj(Ω) · V

• Solve the forward problem: Find u such that

a(Ω;w, u) = `(w) ∀w.

• Solve the adjoint problem: Find λ such that

a(Ω;w, λ∗) = −(w, (u− um)
∗)Γs ∀w.

• Compute the shape derivative

Dj(Ω) · V = G(Ω, u, λ,V ).



Reconstructions using shape optimization
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Reconstructions using shape optimization



Reconstructions using shape optimization



Search for an improved method

Criticisms to the previous method

• A-priori information (number of scatterers) is needed.

• Robustness problems.

• Method is iterative.



Search for an improved method
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What if we could calculate the scalar field DT (x) such that

J(Ωε) = J(Ω) +DT (x)f(ε) + o(f(ε))

DT (x) can be used as an indicator for the position (and shape) of scatterers
in the domain Ω.



Search for an improved method

Topological Derivative [Sokolowski, 1999; Masmoudi, 1998]:

DT (x) := lim
ε→0

J(Ωε)− J(Ω)

f(ε)
,

where Ωε = Ω \Bε(x), f(ε) is a negative function that decreases
monotonically and f(ε)→ 0 as ε→ 0+.
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Search for an improved method

Instead, we can define the topological derivative as follows

D1
T (x) = lim

ε→0

{

lim
δε→0

J(Ωε+δε)− J(Ωε)

f(ε+ δε)− f(ε)

}

.
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Search for an improved method

Define:

Ωτ = {xτ ∈ Rn | ∃x ∈ Ωε, xτ = x+ τV },

V =

{
Vnn Vn < 0 constant on ∂Bε,
0 on ∂Ω.

Theorem:

DT (x) = D1
T (x) = lim

ε→0

1

f ′(ε)|Vn|

d

dτ
J(Ωτ)

∣
∣
∣
∣
τ=0︸ ︷︷ ︸

(•)

for f(ε) such that 0 < |DT (x)| <∞.

Remark: (•) is the shape derivative!



Second method: Topological derivative

In our case

DT (x) = Re
[
∇λ∗(x) · ∇u(x)− k2λ∗(x)u(x)

]
.

Both u and λ can be calculated analytically!

u(x) = uinc(x) = exp(ikx · d)

λ(x(r, θ)) =
∑

n

AnJ|n|(kr) exp(inθ)

An = fn(Fourier components of measured signature)

Method:

Plot DT (x), x ∈ Ω and look for points where DT (x) attains large values.



Reconstructions using topological derivative

Target



Reconstructions using topological derivative

Topological derivatives for niw = ndp = 120.

k = 6 k = 12 Target



Reconstructions using topological derivative

Target



Topological derivatives for niw = ndp = 120.

k = 2 k = 3

k = 4 k = 6



Reconstructions using topological derivative

Targets

F15 VFY218

YF23 B2



Reconstructions using topological derivative

ν = 200MHz Target



Reconstructions using topological derivative

ν = 200MHz Target



Reconstructions using topological derivative

ν = 200MHz Target



Reconstructions using topological derivative

ν = 200MHz Target



Conclusions and future work

Shape sensitivity analysis/topological derivative can be used as a tool to
solve inverse scattering problems.

Comparison with other approaches.

3D reconstructions.

Reconstruction of refractive index.

Seismic imaging.

Work with real data!


